opt-125m-gptq-4bit

Maintained By
ybelkada

OPT-125M GPTQ 4-bit

PropertyValue
Original ModelOPT-125M
Quantization4-bit GPTQ
Authorybelkada
Model HubHugging Face

What is opt-125m-gptq-4bit?

opt-125m-gptq-4bit is a quantized version of Meta's OPT-125M language model, compressed using GPTQ quantization technique to achieve 4-bit precision. This optimization significantly reduces the model's memory footprint while maintaining most of its original performance capabilities.

Implementation Details

The model leverages GPTQ (Gradient-based Quantization) technology to compress the original OPT-125M model from 16-bit or 32-bit precision down to 4-bit precision. This quantization enables efficient deployment on resource-constrained devices and environments.

  • 4-bit quantization for reduced memory usage
  • GPTQ optimization for maintaining performance
  • Compatible with Hugging Face's Transformers library
  • Optimized for inference tasks

Core Capabilities

  • Text generation and completion
  • Efficient inference on limited hardware
  • Reduced memory footprint compared to original model
  • Maintains core language understanding abilities

Frequently Asked Questions

Q: What makes this model unique?

This model stands out for its efficient 4-bit quantization of the OPT-125M architecture, making it particularly suitable for deployment in resource-constrained environments while maintaining reasonable performance.

Q: What are the recommended use cases?

The model is ideal for applications requiring efficient natural language processing on edge devices or in environments with limited computational resources. It's suitable for text generation, completion, and basic language understanding tasks.

🍰 Interesting in building your own agents?
PromptLayer provides Huggingface integration tools to manage and monitor prompts with your whole team. Get started here.